29 research outputs found

    Rapid Characterization of hERG Channel Kinetics I: Using an Automated High-Throughput System

    Get PDF
    Predicting how pharmaceuticals may affect heart rhythm is a crucial step in drug-development, and requires a deep understanding of a compound’s action on ion channels. In vitro hERG-channel current recordings are an important step in evaluating the pro-arrhythmic potential of small molecules, and are now routinely performed using automated high-throughput patch clamp platforms. These machines can execute traditional voltage clamp protocols aimed at specific gating processes, but the array of protocols needed to fully characterise a current is typically too long to be applied in a single cell. Shorter high-information protocols have recently been introduced which have this capability, but they are not typically compatible with high-throughput platforms. We present a new 15 second protocol to characterise hERG (Kv11.1) kinetics, suitable for both manual and high-throughput systems. We demonstrate its use on the Nanion SyncroPatch 384PE, a 384 well automated patch clamp platform, by applying it to CHO cells stably expressing hERG1a. From these recordings we construct 124 cell-specific variants/parameterisations of a hERG model at 25C. A further 8 independent protocols are run in each cell, and are used to validate the model predictions. We then combine the experimental recordings using a hierarchical Bayesian model, which we use to quantify the uncertainty in the model parameters, and their variability from cell to cell, which we use to suggest reasons for the variability. This study demonstrates a robust method to measure and quantify uncertainty, and shows that it is possible and practical to use high-throughput systems to capture full hERG channel kinetics quantitatively and rapidly

    Models of the cardiac L-type calcium current: A quantitative review

    Get PDF
    The L-type calcium current (ICaL) plays a critical role in cardiac electrophysiology, and models of ICaL are vital tools to predict arrhythmogenicity of drugs and mutations. Five decades of measuring and modeling ICaL have resulted in several competing theories (encoded in mathematical equations). However, the introduction of new models has not typically been accompanied by a data-driven critical comparison with previous work, so that it is unclear which model is best suited for any particular application. In this review, we describe and compare 73 published mammalian ICaL models and use simulated experiments to show that there is a large variability in their predictions, which is not substantially diminished when grouping by species or other categories. We provide model code for 60 models, list major data sources, and discuss experimental and modeling work that will be required to reduce this huge list of competing theories and ultimately develop a community consensus model of ICaL. // This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Molecular and Cellular Physiolog

    Rapid Characterization of hERG Channel Kinetics II: Temperature Dependence

    Get PDF
    © 2019 Biophysical Society Ion channel behavior can depend strongly on temperature, with faster kinetics at physiological temperatures leading to considerable changes in currents relative to room temperature. These temperature-dependent changes in voltage-dependent ion channel kinetics (rates of opening, closing, inactivating, and recovery) are commonly represented with Q10 coefficients or an Eyring relationship. In this article, we assess the validity of these representations by characterizing channel kinetics at multiple temperatures. We focus on the human Ether-à-go-go-Related Gene (hERG) channel, which is important in drug safety assessment and commonly screened at room temperature so that results require extrapolation to physiological temperature. In Part I of this study, we established a reliable method for high-throughput characterization of hERG1a (Kv11.1) kinetics, using a 15-second information-rich optimized protocol. In this Part II, we use this protocol to study the temperature dependence of hERG kinetics using Chinese hamster ovary cells overexpressing hERG1a on the Nanion SyncroPatch 384PE, a 384-well automated patch-clamp platform, with temperature control. We characterize the temperature dependence of hERG gating by fitting the parameters of a mathematical model of hERG kinetics to data obtained at five distinct temperatures between 25 and 37°C and validate the models using different protocols. Our models reveal that activation is far more temperature sensitive than inactivation, and we observe that the temperature dependency of the kinetic parameters is not represented well by Q10 coefficients; it broadly follows a generalized, but not the standardly-used, Eyring relationship. We also demonstrate that experimental estimations of Q10 coefficients are protocol dependent. Our results show that a direct fit using our 15-s protocol best represents hERG kinetics at any given temperature and suggests that using the Generalized Eyring theory is preferable if no experimental data are available to derive model parameters at a given temperature

    Models of the cardiac L‐type calcium current: A quantitative review

    Get PDF
    The L-type calcium current (I CaL) plays a critical role in cardiac electrophysiology, and models of I CaL are vital tools to predict arrhythmogenicity of drugs and mutations. Five decades of measuring and modelling I CaL have resulted in several competing theories (encoded in mathematical equations). However, the introduction of new models has not typically been accompanied by a data-driven critical comparison with previous work, so that it is unclear which model is best suited for any particular application. In this review, we describe and compare 73 published mammalian I CaL models, and use simulated experiments to show that there is a large variability in their predictions, which is not substantially diminished when grouping by species or other categories. We provide model code for 60 models, list major data sources, and discuss experimental and modelling work that will be required to reduce this huge list of competing theories and ultimately develop a community consensus model of I CaL

    A Parameter Representing Missing Charge Should Be Considered when Calibrating Action Potential Models

    Get PDF
    Computational models of the electrical potential across a cell membrane are longstanding and vital tools in electrophysiology research and applications. These models describe how ionic currents, internal fluxes, and buffering interact to determine membrane voltage and form action potentials (APs). Although this relationship is usually expressed as a differential equation, previous studies have shown it can be rewritten in an algebraic form, allowing direct calculation of membrane voltage. Rewriting in this form requires the introduction of a new parameter, called Γ 0 in this manuscript, which represents the net concentration of all charges that influence membrane voltage but are not considered in the model. Although several studies have examined the impact of Γ 0 on long-term stability and drift in model predictions, there has been little examination of its effects on model predictions, particularly when a model is refit to new data. In this study, we illustrate how Γ 0 affects important physiological properties such as action potential duration restitution, and examine the effects of (in)correctly specifying Γ 0 during model calibration. We show that, although physiologically plausible, the range of concentrations used in popular models leads to orders of magnitude differences in Γ 0 , which can lead to very different model predictions. In model calibration, we find that using an incorrect value of Γ 0 can lead to biased estimates of the inferred parameters, but that the predictive power of these models can be restored by fitting Γ 0 as a separate parameter. These results show the value of making Γ 0 explicit in model formulations, as it forces modellers and experimenters to consider the effects of uncertainty and potential discrepancy in initial concentrations upon model predictions

    Importance of modelling hERG binding in predicting drug-induced action potential prolongations for drug safety assessment

    Get PDF
    Reduction of the rapid delayed rectifier potassium current (IKr) via drug binding to the human Ether-Ă -go-go-Related Gene (hERG) channel is a well recognised mechanism that can contribute to an increased risk of Torsades de Pointes. Mathematical models have been created to replicate the effects of channel blockers, such as reducing the ionic conductance of the channel. Here, we study the impact of including state-dependent drug binding in a mathematical model of hERG when translating hERG inhibition to action potential changes. We show that the difference in action potential predictions when modelling drug binding of hERG using a state-dependent model versus a conductance scaling model depends not only on the properties of the drug and whether the experiment achieves steady state, but also on the experimental protocols. Furthermore, through exploring the model parameter space, we demonstrate that the state-dependent model and the conductance scaling model generally predict different action potential prolongations and are not interchangeable, while at high binding and unbinding rates, the conductance scaling model tends to predict shorter action potential prolongations. Finally, we observe that the difference in simulated action potentials between the models is determined by the binding and unbinding rate, rather than the trapping mechanism. This study demonstrates the importance of modelling drug binding and highlights the need for improved understanding of drug trapping which can have implications for the uses in drug safety assessment

    Use of Patient Health Records to Quantify Drug-Related Pro-arrhythmic Risk

    Get PDF
    There is an increasing expectation that computational approaches may supplement existing human decision-making. Frontloading of models for cardiac safety prediction is no exception to this trend, and ongoing regulatory initiatives propose use of high-throughput in vitro data combined with computational models for calculating proarrhythmic risk. Evaluation of these models requires robust assessment of the outcomes. Using FDA Adverse Event Reporting System reports and electronic healthcare claims data from the Truven-MarketScan US claims database, we quantify the incidence rate of arrhythmia in patients and how this changes depending on patient characteristics. First, we propose that such datasets are a complementary resource for determining relative drug risk and assessing the performance of cardiac safety models for regulatory use. Second, the results suggest important determinants for appropriate stratification of patients and evaluation of additional drug risk in prescribing and clinical support algorithms and for precision health. Davies et al. analyze patient health records and FDA Adverse Event Reporting System reports to demonstrate how patient subtypes affect the incidence of drug-related arrhythmia. Using such real-world data to understand background arrhythmia can further validate cardiac risk models for regulatory use and help stratify patients when evaluating drug risk

    A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm

    Get PDF
    © 2020 Introduction: hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. Methods: A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. Results: A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. Discussion: This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment
    corecore